对火星轨道变化问题的最后解释
作者君在作品相关中已经解释过这个问题,并在此列出相关参考文献中的一篇开源论文。 以下是文章内容: Long-termintegrationsandstabilityofplanetaryorbitsinourSolarsystem Abstract Wepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-spansincludingallnineplanets.Aquickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.Acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,especiallythatofMercury.ThebehaviouroftheeccentricityofMercuryinourintegrationsisqualitativelysimilartotheresultsfromJacquesLaskar‘ssecularperturbationtheory(e.g.emax0.35over±4Gyr).However,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-termnumericalintegrations.Wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5×1010yr.TheresultindicatesthatthethreemajorresonancesintheNeptune–Plutosystemhavebeenmaintainedoverthe1011-yrtime-span. 1Introduction 1.1Definitionoftheproblem ThequestionofthestabilityofourSolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofNewton.Theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.However,wedonotyethaveadefiniteanswertothequestionofwhetherourSolarsystemisstableornot.Thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtotheproblemofplanetarymotionintheSolarsystem.Actuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofourSolarsystem. Amongmanydefinitionsofstability,hereweadopttheHilldefinition(Gladman1993):actuallythisisnotadefinitionofstability,butofinstability.Wedefineasystemasbecomingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(Chambers,Wetherill&BossIto&Tanikawa1999).AsystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerHillradius.Otherwisethesystemisdefinedasbeingstable.HenceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofourSolarsystem,about±5Gyr.Incidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrenceofanyorbitalcrossingbetweeneitherofapairofplanetstakesplace.Thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(Yoshinaga,Kokubo&Makino1999).OfcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheNeptune–Plutosystem. 1.2Previousstudiesandaimsofthisresearch Inadditiontothevaguenessoftheconceptofstability,theplanetsinourSolarsystemshowacharactertypicalofdynamicalchaos(Sussman&Wisdom1988,1992).Thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(Murray&HolmanLecar,Franklin&Holman2001).However,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10Gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions. Fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(Sussman&WisdomKinoshita&Nakai1996).Thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplanetsthatitismucheasiertofollowthesystemforagivenintegrationperiod.Atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofDuncan&Lissauer(199.Althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto1011yroftheorbitalmotionsofthefourjovianplanets.TheinitialorbitalelementsandmassesofplanetsarethesameasthoseofourSolarsysteminDuncan&Lissauer‘spaper,buttheydecreasethemassoftheSungraduallyintheirnumericalexperiments.Thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasslossinthepaper.Consequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseoftheSun.WhenthemassoftheSunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,orperhapslonger.Duncan&Lissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(VenustoNeptune),whichcoveraspanof109yr.Theirexperimentsonthesevenplanetsarenotyetcomprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations. Ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(Laskar198,Laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofMercuryandMarsonatime-scaleofseveral109yr(Laskar1996).TheresultsofLaskar‘ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations. Inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5×1010yr.Thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedPCsandworkstations.Oneofthefundamentalconclusionsofourlong-termintegrationsisthatSolarsystemplanetarymotionseemstobestableintermsoftheHillstabilitymentionedabove,atleastoveratime-spanof±4Gyr.Actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbytheHillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic.Sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofSolarsystemplanetarymotion.Forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofDelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations. InSection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.Section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.Verylong-termstabilityofSolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements.Aroughestimationofnumericalerrorsisalsogiven.Section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.InSection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5×1010yr.InSection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause. 2Descriptionofthenumericalintegrations (本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。) 2.3Numericalmethod Weutilizeasecond-orderWisdom–Holmansymplecticmapasourmainintegrationmethod(Wisdom&HolmanKinoshita,Yoshida&Nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(Saha&Tremaine1992,1994). Thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(N±1,2,3),whichisabout1/11oftheorbitalperiodoftheinnermostplanet(Mercury).Asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinSussman&Wisdom(1988,7.2d)andSaha&Tremaine(1994,225/32d).Weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses.Inrelationtothis,Wisdom&Holman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,1/10.83oftheorbitalperiodofJupiter.Theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.However,sincetheeccentricityofJupiter(0.05)ismuchsmallerthanthatofMercury(0.2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes. Intheintegrationoftheouterfiveplanets(F±),wefixedthestepsizeat400d. WeadoptGauss‘fandgfunctionsinthesymplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)asasolverforKeplerequations.ThenumberofmaximumiterationswesetinHalley‘smethodis15,buttheyneverreachedthemaximuminanyofourintegrations. Theintervalofthedataoutputis200000d(547yr)forthecalculationsofallnineplanets(N±1,2,3),andabout8000000d(21903yr)fortheintegrationoftheouterfiveplanets(F±). Althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations.SeeSection4.1formoredetail. 2.4Errorestimation 2.4.1Relativeerrorsintotalenergyandangularmomentum Accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.Theaveragedrelativeerrorsoftotalenergy(109)andoftotalangularmomentum(1011)haveremainednearlyconstantthroughouttheintegrationperiod(Fig.1).Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore. RelativenumericalerrorofthetotalangularmomentumδA/A0andthetotalenergyδE/E0inournumericalintegrationsN±1,2,3,whereδEandδAaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,andE0andA0aretheirinitialvalues.ThehorizontalunitisGyr. Notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.IntheupperpanelofFig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-εprecision. 2.4.2Errorinplanetarylongitudes SincethesymplecticmapspreservetotalenergyandtotalangularmomentumofN-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.Toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.Wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.Forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(1/64ofthemainintegrations)spanning3×105yr,startingwiththesameinitialconditionsasintheN1integration.Weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.Next,wecomparethetestintegrationwiththemainintegration,N1.Fortheperiodof3×105yr,weseeadifferenceinmeananomaliesoftheEarthbetweenthetwointegrationsof0.52°(inthecaseoftheN1integration).Thisdifferencecanbeextrapolatedtothevalue8700°,about25rotationsofEarthafter5Gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.Similarly,thelongitudeerrorofPlutocanbeestimatedas12°.ThisvalueforPlutoismuchbetterthantheresultinKinoshita&Nakai(1996)wherethedifferenceisestimatedas60°. 3Numericalresults–I.Glanceattherawdata Inthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata.Theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace. 3.1Generaldescriptionofthestabilityofplanetaryorbits First,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits.Ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets.AswecanseeclearlyfromtheplanarorbitalconfigurationsshowninFigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralGyr.Thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).Thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent. Verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsN±1.Theaxesunitsareau.Thexy-planeissettotheinvariantplaneofSolarsystemtotalangularmomentum.(a)TheinitialpartofN 1(t=0to0.0547×109yr).(b)ThefinalpartofN 1(t=4.9339×108to4.9886×109yr).(c)TheinitialpartofN1(t=0to0.0547×109yr).(d)ThefinalpartofN1(t=3.9180×109to3.9727×109yr).Ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47×107yr.Solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromDE245). ThevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationN 1isshowninFig.4.Asexpected,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforVenus,EarthandMars.TheelementsofMercury,especiallyitseccentricity,seemtochangetoasignificantextent.Thisispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplatheinnermostplanetmaybenearesttoinstability.ThisresultappearstobeinsomeagreementwithLaskar‘s(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofMercuryonatime-scaleofseveral109yr.However,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofMercury.Wewillmentionbrieflythelong-termorbitalevolutionofMercurylaterinSection4usinglow-passfilteredorbitalelements.